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Abstract. A I + 1 dimensional model of n non-intenecfing shings with short-range amactive 
interactions on a lattice is solved exactly. For arbimry finite n > 2 there is a seamd-order 
binding-nnbinding Isansition with lhe same critical expanenu as for n = 2. In the limit n -+ m 
the uansition becomes first order. 

We consider a system of n thermally-fluctuating strings on a square lattice, as shown 
in figure 1. The strings are non-intersecting and subject to the solid-on-solid restriction, 
meaning that each string crosses a horizontal line across the system only once. The strings 
are under tension, i.e. changes in the coordinate x cost energy, and they exert short-range 
forces on each other. Systems similar to this are of interest in connection with the wetting 
transition [ l ] ,  the commensurate-incommensurate transition [Z], the unbinding transition in 
membranes [3], and the statistics of 'drunken walkers' [4]. In this letter we will be mainly 
interested in the binding-unbinding transition that takes place in the presence of short-range 
attractive forces between strings as the temperature or the interaction strength is varied. 

The statistical weight of the n-string system is conveniently specified (see figure 1) in 
terms of the transfer matrix ( x i , .  . . , x; IT(y' - y)lxl . . . , xn}. The restriction that at most 
one string passes through a site is reminiscent of'fehion statistics, &d we use the second- 
quantized representation c: . . .c,+,lO) for the state vector 1x1 . . .x.). He& c, and c: are 
conventional annihilation and creation operators for spinless fermions, and IO) denotes the 
fermion vacuum state. 

In this paper we consider the model with transfer operator 

VY' - y )  = exp[-H(y' - Y)J (la) 

H =  

In equation (1) the index i rather than x is used to avoid confusion with the xxz  spin model 
to be encountered below. Periodic boundary conditions, i.e. cl = CN,+I ,  are imposed. 

Equation (1) defines the transfer mamx for arbitrary continuous y' - y, not just for 
integer values. Expanding T(y' - y) to first order in y' - y, we see that the quantity R, 
which is taken to be positive, is a monotonically decreasing function of the string tension. 
The quantity RU is positive for an attractive force between adjacent shings with a range of 
one lattice constant and negative for a repulsive force. The parameter R can be eliminated 
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Figure 1. System of five stings. 

from equation (1) by the rescaling y + y / R  of lengths in the y direction, and with no loss 
of generality we set R = 1 from now on. 

In earlier work [5] we gave an exact analysis of the model ( I )  for an injinite number 
of strings occupying a finite k- t ion p of the lattice sites. We considered the double 
thennodynamic limit n + CO, NI + CO with 0 < p 4 1, where 

n 
Nx 

p =  lim -. 

Some of our results for suings were first derived in the context of the quantum lattice gas 
by Yang and Yang [6]. 

In this paper we study the binding-unbinding transition ofjinite numbers of strings on 
an infinite lattice. The limit N, -+ 00 is taken holding n fixed. The case n = 3 is of 
particular interest. Both first-order [7] and second-order [SI unbinding bansitions have been 
reported for three-string models with the same general features as the one we consider. 

With the Wigner-Jordan transformation ST = ~ ~ e x p ( i n ~ ~ , ~ c ~ , ) ,  the fermion 
Hamiltonian (I) ,  with R = 1, may be rewritten [9] as H = HUz, where 

(3) H”’ =~-2  Crspi;, + S[SL, + ;U(s;S;+, - $1 + ;u(S; + ?)I 1 

is the quantum spin-l/Z X X P  Heisenberg Hamiltonian. 

by 
The magnetization, which commutes with and the number of strings n are related 

According to equations (1) and (3), in the limit Ny + CO the minimum energy E&) of 
the xxz chain for a given n represents ‘be free energy of the system of n strings. 
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The xxz model is soluble by the Bethe a n s a  and has been studied extensively 
[6, IO, 1 I]. In the limit N, -+ cc with finite n > 2 

-2n U < z  

where 

and the K ,  are ordered so that K,+, < .vol. For U z 2 the state of minimum energy is 
a bound state of the n fermions. The wave numbers pa = iK, are imaginary, i.e. the K. 
are real, reflecting the real exponential character of the Bethe ansatz wave function. For 
U < 2 the fermions are unbound in the state of minimum energy. The corresponding wave 
numbers are real and vanish in the limit N, + 00. For all n > 2 the unbinding transition 
takes place at U = 2. 

With the substitutions 

U =2cosh$ 4 > 0 (64 

K, 4 *a 

2 2 2 
tanh- =tanh-tanh- 

the recurrence relation (5b) takes the simpler form 

Thus ~ & ' u + I  = Jr, - 24, which with (5c) and (6b) implies 

The critical behaviour as U approaches 2 may be studied by expanding equations (5a) 
and (8) in powers of U - 2. This yields 

Eo(n) = -2n - &n(n2 - l ) ( U  - 2)'+ O[(U - Z)4] (9b) 

for U z 2. 
Comparing equations (5n) and (96). one s e a  that the free energy E&) and its first 

derivative with respect to U are contjnuous at U = 2, whereas the second derivative 
is discontinuous. Thus the unbinding trans'ition of the strings is second order, with a 
discontinuity in the specific heat C a az&,(n)/aUz. 

, 
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As in [8] we define critical exponents @, I J ~ ,  U I I  by 

c - (U - U J U  

e1 - (U - Uc)-”L 

(e) - (U - U,)-* 

cl - (U - U p  

as U approaches the critical value U, = 2 from above. Here ( e )  denotes the average 
separation of the strings, and CL and 611 the correlation lengths with which the correlation 
function 

(11) W’, Y‘; x, Y )  = (Eo(n)l@,,exp(-W - Eo(n)l(y’ - y))c~cxIEo(n)) 

decays in the x and y directions, respectively. 

K;I in the Bethe ansatz wave function. Equations (9) and (IO) imply 
The quantities (e) and eL have the same critical behaviour as the attenuation lengths 

a = o  @ = u V s = l .  ( 1 2 4  

From equations ( I ) ,  (3) and (11) one sees that e;’ = El(n) - E&), where E l @ )  is 
the energy of the lowest excited state for which (E,(n)Ic:c,IEo(n)) # 0. Presumably this 
state corresponds to n - 1 bound strings and one free string with zero momentum. Thus 
from equations (5n) and (9) 

U,I = 2. ~ (126) 

The exponents in equation (12) are independent of n. For arbitrary b i t e  n > 2 the 
unbinding transition is in the same universality class as for n = 2. This transition, in turn, 
is in the same universality class as the much investigated depinning transition of a 1t1 
dimensional string attracted to the boundary of a semi-infinite system by a short-range force 
111. 

Netz and Lipowsky [SI have camied out numerical studies of the unbinding of three 
strings interacting in I c l  dimensions with hard-core square-well potentials. The fluctuations 
of the interior string generate a repulsive effective potential between the two outer strings 
proportional to the inverse square separation. This particular spatial dependence leads to 
non-universal critical exponents in two-string systems [7,12], and Netz and Lipowsky find 
that the critical exponents @, V I .  uil of three strings decrease as the tension of the interior 
string is lowered with the other two tensions held fixed. There is no indication of non- 
universality in the exact critical exponents (12) for the model defined by (1). However, in 
the Hamiltonian ( I )  all the strings have the same tension. 

We now tum to the limit n + ~ M ,  having already taken the limit Nx + 00 in obtaining 
equations (5)-(9). The coefficient of (U - 2)2 in equation (9) diverges as n3 for large n, 
signalling a change in the nature of the transition. We shall see that the transition becomes 
first order. 

In the limit n + 00 the sum in equations (5a) and (8) can be evaluated analytically [6] 
for arbitrary U > 2, with the result 

m 

z(U - ~ c o s ~ K , ) =  (U2-4)L’2. 
01=1 

Together with equation (Sa) this implies 

(13) 
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The quantity e(U)  is the free energy per string. Its derivative with respect to U has the 
discontinuity 

corresponding to the latent heat per string in the unbinding transition. Thus the transition 
is first order. 

As mentioned above, in earlier work [5] we studied system (1) in the limit (2) of an 
infinite number of shings,with a finite density b. For 0 c p < 1 there is a first-order 
transition at U = 2, with a clustered m bound string phase for U z 2. For U c -2 and 
p = 112 (half filling of the lattice), the system exhibits long-range staggered order. 

Presumably if the limit n + 00 is taken after the limit N, -+ 00, as in deriving the 
free energy per string e ( U )  given in equation (14). the number of strings, though infinite, 
always remains negligible in comparison with the system size, i.e. p = 0. We now show 
that the free energy per string ;(Cl, p ) ,  calculated in the double thermodynamic limit (2). 
does indeed reduce to e ( U )  in the limit p -+ 0. 

Defining P ( U , p )  to be the lowest eigenvalue of Hxx21n for fixed p in the limit 
n, N, + M. we note the relation 

pP(U, p )  = 2 f (up,  zp - 1) + +U - up (16) 

with the function f ( A , y )  analysed k d e t a i l ~  by Yang and Yang [10;11]. For U 
2, f (A,  y) = -A/4, corresponding to a ferromagnetic ground state. Substitution of this 
result and the asymptotic form (see equation (70) in [ll]) of f (A,  y) for y + -1, A < 1 
yields 

where the O(p4) correction also depends on U .  Thus ;(U, p )  does indeed reduce to e(U) 
given in (14) in the limit p + 0. 

In concluding we briefly summarize the phase diagram of the system of shings in the 
variables U ,  p and the nature of the corresponding phase transitions. More details can be 
foundin [5,6,10,11,13]. 

The free energy per string ;(U, p )  is analytic in U and p except on the line U = 2 and 
the half line U c 2, p = 112. For U > 2 the strings are bound, and the pressure 

vanishes identically, as follows from (17). The transition at U = 2 is first order, i.e. aZ/aU 
is discontinuous. This can be seen in the limit p + 0 from equation (17) and for p = 112 
from equation (45) in [Ill. 

The special role of p = 112 (half filling of the lattice) is related to pdcle-hole symmetry 
in the fermion model ( I )  or up-down symmetry [IO, 1 I] in the xxz model (3), which imply 
f ( A q  y) = f ( A ,  -y) in equation (16). For U < -2, p = 112 the strings have long-range 
staggered order. There is ‘Luttinger liquid‘ behaviour [I31 for U < 2 except on the line 
p = 112. 
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For U < -2 the pressure P given by (18) is discontinuous at p = 112. For 
-2 < U < 2, P is continuous at p = 112, but amZ/apm diverges form > 2+4p./(n - p.), 
where U = -2 cos p., 0 < p. c x. At U = -2, p = 112 the free energy P(U, p) has an 
essential singularity. All its derivatives with respect to U are continuous at this point. 

Finally we recall that in the Luttinger-liquid phase the correlations of the strings decay 
as power laws with non-universal U-dependent exponents [5,13]. This is quite a different 
manifestation of non-universality from the non-universality in the unbinding of three. strings 
reported in [SI. 

We thank Michael E Fisher and R Lipowsky for discussions and correspondence and Ihnsouk 
Guim for help with calculations. 
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